Prospectively Validated Pre-Operative Prediction of Weight and Co-Morbidity Resolution in Individual Patients Comparing Five Bariatric Operations

Gus J Slotman, M.D.

Department of Surgery

5 Inspira Health Network

Vineland, NJ

Address for Correspondence:

Gus J Slotman, M.D, FACS, FCCM, FCCP, FASMBS

10 Director of Clinical Research

Inspira Health Network

1505 West Sherman Avenue

Suite B

Vineland, NJ 08360

15 Telephone: 856-641-8635

FAX: 856-641-8636

Email: slotmang@ihn.org

Word count: 2,454

Running title: Predicting outcomes after bariatric surgery

20 Acknowledgements: Supported, in part, by a research grant from the Lourdes Foundation,

Camden, NJ

Presented, in part, at Obesity Week, November 11-16, 2013, Atlanta, GA

30

ABSTRACT

Background: No method predicts, pre-operatively, post-operative bariatric surgery outcomes in

individual patients. Decisions for/against surgery and operation choice remain subjective. Only

1% of qualifying patients embrace bariatric surgery.

Objective: To predict pre-operatively, and validate prospectively, weight and co-morbidity

resolution in individual patients after open (RYGB) and laparoscopic (LRYGB) gastric bypass,

laparoscopic adjustable gastric band (LAGB), sleeve gastrectomy (SG), and bilio-pancreatic

diversion/duodenal switch (BPD/DS).

Design: Retrospective analysis

35

40

Setting: Surgical Review Corporation BOLD database, 2007-2010

Participants: 166,601 patients who had RYGB (n=5,389), LRYGB (n=83,059), LAGB (n=67,514),

SG (n=8,966), or BPD/DS (n=1,673)

Interventions: None

Main Outcomes and Measures: Patients were randomized into modeling (n=124,053) and

validation (n=42,548) groups. From pre-operative data, multivariate linear and logistic

regression predicted weight and co-morbidities at 2, 6, 12, 18, and 24 months post-operatively.

Model fit was examined by r-squared and ROC/AUC and predicted versus observed results via

Pearson correlation coefficient and Sensitivity/Specificity.

Results: Follow-up at 2/24 months was 120,909/11,014 for Modeling and 41,528/3,703 for Validation. Weight models r-squared was 0.910, 0.813, 0.725, 0.638, and 0.613 at 2, 6, 12, 18, and 24 months, respectively. Categorical ROC/AUC was 0.617 to 0.949 for 24 month predictions. Continuous Pearson Coefficients were 0.969/0.811 at 2/24 months. Co-morbidity resolution median 24 month Sensitivity/Specificity were 79.2%/ 97.42%.

Conclusions: Prospectively validated pre-operative models predict, in individual patients, weight and obesity co-morbidities two years in advance for RYGB, LRYGB, LAGB, SG or BPD/DS. This advance knowledge facilitates choosing which operation is best for each individual and may encourage more patients to choose bariatric surgery.

Introduction: Morbid obesity affects 6.3% of the US population,^(1, 2) with weight-related medical problems doubling their medical expenses.⁽³⁾ From the 2012 US Census,⁽⁴⁾ over 19.8 million Americans meet NIH criteria for bariatric surgery.⁽⁵⁾ Nevertheless, only about 0.97% of those who qualify for bariatric operations actually undergo surgery ⁽⁶⁾ and benefit from its weight loss and resolution of co-morbidities.⁽⁷⁾ The relative efficacy of different operations may

be debated,⁽⁸⁾ but the minimal penetration of bariatric surgery into the morbidly obese population leaves millions disabled. Characteristics of operative patients are understood, ⁽⁹⁾ but why patients decide against bariatric surgery remains unknown. Certainly variation in health insurance coverage for bariatric surgery and accompanying financial concerns are contributing factors ⁽¹⁰⁾. Patient lack of knowledge and concerns over outcomes and complications may contribute. ^(11, 12). Among obese patients who declined bariatric surgery, Fung and associates found fear of complications (51%), not needing weight loss surgery (32%), fear of surgery (24%), and costs (20%) to be the principal reasons against operation ⁽¹³⁾. The open question is how to calm those concerns and encourage more patients to embrace surgical weight loss.

The lack of validated outcomes predictions for individual morbidly obese patients may be another factor that discourages patients from having weight loss surgery. Calculators predicting the relatively rare complications of bariatric surgery (14,15,16) and non-validated weight loss calculators (17) are reported. Nevertheless, prospectively validated predictions for bariatric surgery, applicable to individuals and comparing future results of the most common operations are not available. Thus, in counseling patients about bariatric surgery, physicians can reference only the published results for each operation, not individual outcomes. Ultimately, the choice of whether or not to have weight loss surgery, and which procedure to undergo, are left, subjectively, to the patient.

The present study hypothesized that the Systemic Mediator Associated Response Test (SMART) methodology could predict individual bariatric surgery outcomes from pre-operative clinical data. Previous, SMART models predicted qualitative and quantitative results in septic patients,

(18) and identified cohorts within failed clinical trials among which study drugs reduced septic mortality. (19) The objective of the present study, then, was to determine whether or not outcomes from the most frequently performed bariatric operations could be predicted in individual patients from pre-operative data, and then validated prospectively in a separate population.

85

90

95

100

Methods: With the approval of the Data Access Committee of the Surgical Review Corporation (SRC) and of the Institutional Review Board of Our Lady of Lourdes Medical Center, Camden, N.J., HIPAA-compliant data from the SRC's Bariatric Outcomes Longitudinal Database (BOLD) (20) on 166,601 patients who had undergone primary bariatric surgery between June 1, 2007 and December 31, 2010, and who had had at least one post-operative follow-up visit was analyzed. Business and validation rules were built into BOLD to flag or reject potential errors at the point of data entry, as well as automated data quality reports to identify unacceptable trends after data capture. In addition, pre-operative data, post-operative complications, and deaths entered into BOLD were verified 100% on-site by SRC monitors. Long term follow-up information was verified by random chart reviews in at least 15% of the cases. (20) Revisional operations were excluded from the present study. In the overall population, 5,389 patients underwent RYGB, 83,059 had LRYGB, 8,966 received SG, 67,514 had LAGB, and 1,673 had BPD/DS (BPD and BPD/DS combined). Subjects were randomized into a modeling group (n = 124,053) or a validation group (n = 42,548). Pre-operative BOLD parameters with <5% missing data (n=46) were screened as independent variables. Categorical pre-operative variables subcategorized by severity of illness in BOLD using semi-numerical scales of 1 to 5 or 1 to 4, etc. were included in the statistical mix. Continuous dependent variables included weight and weight loss. Dichotomous dependent variables included diabetes mellitus, hypertension, obstructive sleep apnea (OSA), liver disease, cholelithiasis, gastro-esophageal reflux disease (GERD), congestive heart failure (CHF), abdominal hernia, surgeon/support group follow-up and adverse events, as defined by the Surgical Review Corporation's BOLD reporting definitions. (20) From a General Estimating Equation platform, multivariate linear regression identified preoperative independent variables that predicted weight and weight loss at 2, 6, 12, 18 and 24 months for each operation. Multivariate logistic regression identified pre-operative independent parameters predicting co-morbidities at 2, 6, 12, 18 and 24 months for each operation, and adverse events at 0-6, and 0-12 months. All models were built using forward selection. Only independent variables with interaction coefficients p<0.10 were included in the models. Low-incidence variables causing quasi-complete separation of data points were not used. The coefficient of determination (r²) tested model fit for continuous dependent variables. Receiver Operating Characteristics/Area Under the Curve (ROC/AUC) examined dichotomous model fit. (21) Modeling was performed for each operation for each dependent variable at each observation point.

Linear models were tested by comparing validation group predicted values to the observed outcomes using Pearson correlation coefficients. Logistic models were validated by sensitivity and specificity. (21)

105

110

115

Results: Pre-operative variables that were screened as weighted independent variables (n=46) and those included in the final prognostic models (n=26) are listed in Table 1.

Model fit for continuous and dichotomous dependent variables and validation results are displayed in Table 2. For weight/weight loss, r² values were 0.910, 0.813, 0.725, 0.638, and 0.613 in baseline models that predicted these continuous dependent variables at 2, 6, 12, 18, and 24 months post-operatively, respectively. ROC AUC for dichotomous dependent variables ranged from 0.985 for cholelithiasis at 2 months to 0.599 for Surgeon Follow-up/Support group attendance at 12 months. Models for the complications of nausea and vomiting, intra-abdominal complications, and organ failure and sepsis were not successful because low event rates caused a quasi-separation of points. Grouping all occurrences of these adverse events into an Any AE category resulted in an ROC AUC of 0.683 for both the 0-6 month and 6-12 month periods.

Weight/weight loss models were validated at 2, 6, 12, 18, and 24 months after surgery with Pearson Correlation Coefficients of 0.959, 0.932, 0.875, 0.837, and 0.811, respectively. Validation of dichotomous models included median sensitivity of 79.2% (range 25.0% to 98.30%) and median specificity of 97.42%% (range 80.27% to 99.99%). For Any Adverse Event,

specificity for both 0-6 months and 6-12 months was 99.92% but sensitivity was only 0.52% and 0.51%, respectively, for those intervals.

Discussion: This investigation describes a method that predicts, from pre-operative clinical data, in individual patients, what weight/weight loss and the presence or absence of the most serious obesity co-morbidities will be up to twenty-four months in advance following RYGB, LRYGB, LAGB, SG, or BPD/DS. These results individualize the choice of bariatric operation for morbidly obese patients. Weight/weight loss were validated at clinically useful accuracy. Diabetes mellitus was predicted with a 24 month specificity of 93.97%, and clinically applicable sensitivities. Hypertension prognostications had consistently high sensitivity/specificity. Obstructive sleep apnea models achieved specificities greater than 90% through 24 months. Pre-operative predictions of liver disease also carried strong validation results, as did cholelithiasis models through 24 months. Presence/absence of GERD was forecast well from pre-operative data. Abdominal hernia models had excellent sensitivity and specificity. In spite of high specificities, low event rates for congestive heart failure, any adverse event, and surgeon follow-up/support group attendance limited sensitivity in those models. Our review of

the literature indicates that the prospectively validated predictions of weight/weight loss and of the presence or resolution of obesity co-morbidities in individual patients described here, comparing results from five different operations, have not been reported previously and represent a significant advance in the field of bariatric surgery. These predictive engines will enable physicians and morbidly obese patients to individualize objectively the choice of bariatric operation.

175

180

185

170

While previous reports described clinical formulae, ⁽²²⁾ quartile regression curves, ⁽²³⁾ artificial neural networks, ⁽²⁴⁾ and other correlations ⁽²⁵⁾ to predict weight/weight loss, most applied to only one operation, were not validated prospectively, and used databases less comprehensive for each patient a pre-operative baseline than BOLD. Baseline weight/weight loss models in the present investigation achieved Pearson correlation coefficients of 0.959, 0.932, 0.875, 0.837, and 0.811 at 2, 6, 12, 18, and 24 months post-operative, respectively. The results here, for the first time, enable data-based, individualized choice of weight loss operation.

loss. ^(28, 29) Knowing, in addition, what diabetes resolution will be comparing five operations could increase patients' confidence in choosing bariatric surgery. In the current analysis, Type II diabetes in individual patients was predicted accurately up to 24 months in advance. Diabetes sensitivity ranged from 98% to 60%, with specificity consistently above 91%. Previous studies

Type II diabetes mellitus afflicts 28-52% of bariatric patients, (26, 27) and improves with weight

associated diabetes control with post-operative weight loss, (28) and various clinical parameters,

but did not predict individual outcomes. (29) The prognostic models reported here enable Type II diabetes patients to know what their relative risk of diabetes persistence/resolution will be following bariatric surgery up to 24 months in advance, comparing future results from five weight loss operations.

Arterial hypertension resolves frequently following bariatric surgery. (30, 31) However, prior to the present investigation, remission or persistence of hypertension after any weight loss procedure was not predicted, but, rather, only associated statistically with baseline parameters and post-operative weight loss. (30, 31) In the current report, prospectively validated models predicted the risk of hypertension for individual patients up to 24 months in advance, comparing outcomes for RYGB, LRYGB, SG, LAGB and BPD/DS. Sensitivity/specificity were 92.44%/85.21% at 2 months and 79.56%/79.3% at 24 months. These models will enable individual hypertensive patients to choose objectively which procedure will control her/his high blood pressure most effectively.

Obstructive sleep apnea affects more that 40% of bariatric patients, ⁽²⁷⁾ and often resolves following weight loss surgery. ⁽³²⁾ However, post-operative outcomes predictions do not apply to individuals. Models that predicted OSA in the present paper performed well, with all ROC/ACU values 0.827 and higher, and sensitivity/specificity ranging from 73.99%/93.6% at 2 months, to 50.76%/90.95% at 24 months. Our review of the literature indicates that such

validated advance knowledge of OSA persistence/resolution in individual bariatric surgery patients has not been reported previously, and is an important finding of this study.

Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis involve 7-16% of bariatric surgery patients. (26, 27) While liver disease may resolve with weight loss, results vary between RYGB, LRYGB, LAGB, SG, and BPD/DS (31), adding decisional uncertainty for patients regarding which operation to undergo. For these patients, the liver disease models presented here add objectivity to the choice of bariatric procedure, with median sensitivity/specificity at 84.79%/98.41%. Thus, although the diagnosis of liver disease in BOLD was clinical only, as liver biopsies were not required on all patients, the prognostic models here provide individual weight-related liver dysfunction patients with clinically significant guidance regarding its resolution by operation type.

At surgery, 9-31% of bariatric patients have gallstones, ^(26, 27) and the incidence increases with post-operative weight loss. ⁽³³⁾ However, pre-operative factors that predict the incidence of cholelithiasis following weight loss operations are not established. In this investigation, pre-operative cholelithiasis models were validated at sensitivity/specificity above 86.93%/97.21% through 24 months, providing a reliable means of identifying patients most at risk for gallstone formation. This advance knowledge could facilitate the decision of whether or not to perform incidental cholecystectomy at the time of primary bariatric surgery, or, for high risk patients without gallstones at operation, medical prophylaxis.

GERD is diagnosed pre-operatively in 35-52% of patients who undergo bariatric surgery. (26, 27) Resolution of GERD is excellent with RYGB/LRYGB, and DS, variable with LAGB, but GERD may increase following SG. (34) Our review of the literature suggests that the present investigation is the first to predict relative risk of GERD in individual patients after weight loss procedures. While sensitivity drifted below 50% at 12 months, specificity actually increased in the 12-24 month models. Considering the inter-procedure variation of bariatric surgeries regarding post-operative GERD, the advance knowledge presented in this study may enable patients to compare the GERD effects of each technique in their individual cases.

240

245

235

At least 8% of bariatric surgery patients have pre-existing inguinal and ventral abdominal wall hernias. How and when to repair these defects continues to be debated. However, the incidence of abdominal hernia can increase following bariatric surgery to 50% and higher (33) The prognostic models reported here provide patients and surgeons reliable pre-operative predictions of abdominal hernia development in individuals, comparing the five most common weight loss procedures. With ROC/AUC's all 0.921 and higher, and sensitivity/specificity consistently at clinically useful levels, these findings can facilitate objective pre-operative bariatric surgery planning regarding relative risk of abdominal hernia.

250

Congestive heart failure affects up to 9% of bariatric surgery patients pre-operatively. (26)

Although weigh loss logically should ameliorate CHF severity, the rate of CHF following bariatric surgery can increase to over 22%. (33) The ability to identify before surgery the individuals most

at risk for CHF months and years after weight loss operations certainly could assist in preoperative planning and peri-surgical management. In the present work, CHF ROC/AUC model fit was excellent. However, although specificity was above 99%, low event rates kept sensitivities in the 40% range and below. Nevertheless, these results are the first reported predictions of CHF in bariatric surgery.

255

270

Close long-term follow-up with bariatric surgeons and staff and regular support group attendance help to optimize surgical outcomes. In the present investigation, pre-operative modeling ROC/AUC's were 0.620 and under, Specificity was above 99%, but Sensitivity was <1%. In this modeling, then, one knows before surgery who will not follow-up, but not who are the compliant patients. Perhaps this at least identifies pre-operatively patients who need the most encouragement for follow-up compliance.

Modeling for adverse events yielded ROC/AUC of 0.683, high Specificity, and Sensitivity less than 1%, leaving the identities of problem-free patients clear, but not those at highest risk of complications. Fortunately, complications after bariatric surgery have been addressed by previous authors. Sarela et al developed the Obesity Surgery Mortality Risk Score, which predicts operative mortality. (14) Maciejeski and co-authors and stratified mortality risk for gastric bypass. (8) Ramanan et al (15) developed a validated bariatric surgery mortality risk calculator, and Gupta and co-authors (16) generated a morbidity risk calculator, both of which

are available online: http://www.surgicalriskcalculator.com/bariatric-surgery-risk-calculator.

275 These clinical aides complement the prognostic models described in the present study.

280

285

290

A practical hypothetical demonstration of the outcomes models described here as applied to individual patients may be illustrative. In this clinical example, consider a 50 year-old Caucasian female who is 5ft.4in.tall, weighs 320 lbs., is employed full-time, drinks socially, takes ibuprofen for back and musculoskeletal pain, has stress urinary incontinence occasionally, has OSA, and takes antidepressants, proton pump inhibitors for GERD, one medication for hypertension, and oral agents for Type II diabetes. She does not have angina, asthma, CHF, cholelithiasis, liver disease, obesity hypoventilation syndrome, psychologic impairment, pulmonary hypertension, abdominal hernia, or other mental health diagnoses. This baseline information was entered into the prognostic models, and the program provided outcomes predictions of weight and relative risk of abdominal hernia, CHF, cholelithiasis, GERD, diabetes, hypertension, liver disease, and surgeon follow-up/support group attendance. Predicted outcomes for this patient are listed in Table 3.

To be clear, the prognostic models in this report use pre-operative clinical data, without laboratory or radiology results, to predict outcomes for individual morbidly obese patients, within the validation predicted versus observed statistical analyses presented, that would result if individuals were to choose RYGB or LRYGB or AGB or SG or BPD/DS. Prediction of the relative probability of a patient choosing one bariatric surgery approach over another was not attempted, as no database, including BOLD, can support statistical modeling for the ultimately subjective choices individuals make for their healthcare. Similarly, comparing statistically the

outcomes following one operation versus another was not part of this study. Results variation among these procedures have been well-described in the literature⁽⁵⁻⁹⁾. The concept underlying the present investigation was that pre-operative clinical characteristics of morbidly obese patients could be linked statistically to known bariatric surgery outcomes in the Modeling cohort, and that the accuracy of those models could be validated in a separate, similar population. The goal thus achieved was to give morbidly obese individuals and their healthcare providers additional advance knowledge of what outcomes could be for them if they were to choose one of the operations analyzed.

There are several limitations to this study. Firstly, the definitions of obesity co-morbidities in BOLD were entirely clinical. For example, that liver biopsies were not performed universally may have made the BOLD data incomplete academically. Secondly, BOLD contains no preoperative laboratory or radiology information, all of which might have facilitated even more accurate predictive models. However, as a serendipitous benefit, the data on which the models here were based comprises common clinical information that enables every patient to benefit from the bariatric surgery prognostications presented. Thirdly, the decrease in follow-up patient visits over time may have contributed to sub-optimal modeling/validation for some conditions. Finally, the possible inconsistencies of a retrospective analysis on a prospectively collected database apply, which was the rationale for randomizing the entire BOLD population into Modeling and Validation databases at the beginning of this study.

Conclusions: Statistical models in this investigation provide individual morbidly obese patients clinically usable predictions of what weight and relative risk of the presence/absence of diabetes, hypertension, OSA, liver disease, cholelithiasis, GERD, and abdominal hernia would be up to 24 months in advance, comparing results from RYGB, LRYGB, LAGB, SG, and BPD/DS. Such advance knowledge may help facilitate optimized bariatric surgery outcomes. The clinical predictions described here are intended to supplement the knowledge and judgment of bariatric surgeons in recommending the best operation for each patient. Certainly medical and anatomical conditions can render the predicted best procedure for individual patients from these models suboptimal for her/him. In addition, it may be that, in spite of this objective advance knowledge and the surgeon's counseling, some patients still will choose bariatric procedures that are not optimal for them. For example, although Schauer and co-investigators reported superiority of LRYGB over SG in controlling Type 2 diabetes (35), in the current wave of public popularity for SG, the latter may be chosen in spite of the published data. Also, some patients who could benefit from bariatric surgery still might not choose operative treatment of their obesity even with the individualized pre-operative outcomes predictions afforded by this research, as, ultimately, it remains a personal, individual decision. Nevertheless, in the net effect, one hopes that the new predictive methodology presented here will become accessible to patients and physicians so that it might facilitate optimized patient care and, possibly, thereby may encourage more morbidly obese patients to embrace the benefits of weight loss surgery. The next step in this research, then, is to identify and engage formats that will enable utilization of the predictive models described in this report, so as to put into practice the clinical benefits for which they were developed.

315

320

325

330

Disclosure: The author has no disclosures.

340

References:

- 3451. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents and adults, 1999--2002. JAMA 2004;291:2847--50.
 - Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. *Journal of the American Medical Association*. 2012; 307(5):491–97
- 3503. Arterburn DE¹, Maciejewski ML. Impact of morbid obesity on medical expenditures in adults.

 J.Int J Obes (Lond). 2005 29(3):334-9.
 - 4. http://www.census.gov/popclock/
 - 5. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus

 Development Conference Statement. Am J Clin Nutr 1992;55(2Suppl.):615S–619S

- 3556. Ponce J, Nguyen N, Hutter M, Sudan R, Morton JM. American Society for Metabolic and Bariatric Surgery estimation of bariatric procedures in the United States, 2011-2014. SOARD 2015. 11: 1199-1200
 - 7. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric Surgery A Systematic Review and Meta-analysis *JAMA*. 2004;292(14):1724-1737.
- 3608. Maciejewski ML, Arterburn DE, Cost-effectiveness of Bariatric Surgery JAMA. 2013; 310(7):742-743.
 - Jakobsen GS, Hofso D, Roislien J, Sandbu R, Hjelmesaeth J. Morbidly Obese Patients—Who Undergoes Bariatric Surgery? Obes Surg. 2010 20(8): 1142–1148
- 10. Lee J, Sheer J, Lopez N, Rosenbaum S. Coverage of Obesity Treatment: A State-by-State

 365 Analysis of Medicaid and State Insurance Laws. Public Health Rep. 2010 Jul-Aug; 125(4): 596–

 604
 - 11. Maciejewski ML, Winegar DA, Farley JL. Risk stratification of serious adverse events after gastric bypass in the Bariatric Outcomes Longitudinal Database. Surgery for Obesity and Related Diseases 8 (2012) 671–678
- 37012. Afonso BB¹, Rosenthal R, Li KM, Zapatier J. Perceived barriers to bariatric surgery among morbidly obese patients. Surg Obes Relat Dis. 2010 6(1):16-21
 - 13. Fung M, Wharton S, Macpherson A, and Kuk J. Receptivity to Bariatric Surgery in Qualified Patients Journal of Obesity Volume 2016 (2016), Article ID 5372190, 6 pages
- 14. Sarela AI, Dexter AS, McMahon MJ. Use of the Obesity Surgery Mortality Risk Score to PredictComplications of Laparoscopic Bariatric Surgery. OBES SURG (2011) 21:1698–1703.

- 15. Ramanan B, Gupta PK, Gupta H, et al. Development and Validation of a Bariatric SurgeryMortality Risk Calculator Surg 2012;214:892–900.
- 16. Gupta PK, Franck C, Miller WJ. Development and Validation of a Bariatric Surgery Morbidity
 Risk Calculator Using the Prospective, Multicenter NSQIP Dataset J Am Coll Surg 2011;212:301–
 380 309.
 - 17. Campos GM, Rabl C, MD, Mulligan K. Factors Associated With Weight Loss After Gastric Bypass Arch Surg. 2008;143(9):877-884
- 18. Slotman GJ: Prospectively validated prediction of physiologic variables and organ failure in septic patients: The Systemic Mediator Associated Response Test (SMART). Crit Care Med 2002; 30:1035-1045
 - 19. Slotman GJ: The systemic mediator-associated response test (SMART) identifies patients in failed sepsis clinical trials among whom novel drugs reduce mortality. J. Trauma 2011; 71(5):1406-14
- 20. DeMaria EJ, Pate, Warthen M., Winegar DA. Baseline data from American Society for Metabolic
 390 and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric
 Outcomes Longitudinal Database Surgery for Obesity and Related Diseases 6 (2010) 347–355
 - 21. SAS/STAT(R) 9.22 User's Guide, 2009. The SAS Institute, Cary, NC
- 22. Sczepaniak JP, Owens ML, Garner W. A Simpler Method for Predicting Weight Loss in the First
 Year after Roux-en-Y Gastric Bypass Journal of Obesity

 Volume 2012 (2012), Article ID 195251, 5 pages

- 23. Wood GC, Benotti P, Gerhard GS. A Patient-Centered Electronic Tool for Weight Loss Outcomes after Roux-en-Y Gastric Bypass Journal of Obesity Volume 2014 (2014), Article ID 364941, 7 pages
- 24. Wise ES, Hocking K, Kavic SM. Prediction of excess weight loss after laparoscopic Roux-en-400 gastric bypass: data from an artificial neural network Surg Endos 2016, 30:480-8
 - 25. Livhits M, Mercado C, Yermilov I Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes Surg. 2012 Jan;22(1):70-89. doi: 10.1007/s11695-011-0472-4.
 - 26. Raisdana B, Slotman G: Cardiopulmonary, Metabolic, and Hepatobiliary Dysfunction Varies by Insurance Status in the Mega-Obese . Crit Care Med. 2014. 41: 12 (Suppl.) 542
- 40527. Adams M, Slotman G: The Effect of Race on the Distribution of Demographics, Body Mass, and Medical Co-Morbidities in Morbid Obesity An Analysis of 83,059 Patients from the BOLD Database. Am. J. Gastroenterology. 2013 108: S479
 - 28. Coupaye M, Sabaté JM, Castel B. Predictive Factors of Weight Loss 1 Year after Laparoscopic Gastric Bypass in Obese Patients. OBES SURG (2010) 20:1671–1677
- 41029. Park JY, Kim YJ. Prediction of diabetes remission in morbidly obese patients after Roux-en-Y gastric bypass. Obes. Surg. DOI 10.1007/11695-015-1823-3
 - 30. Våge V, Nilsen RM, Berstad A, Shahzeer Karmali, and Michel Gagner. Predictors for Remission of Major Componentsof the Metabolic Syndrome After Biliopancreatic Diversion with Duodenal Switch (BPDDS) OBES SURG (2013) 23:80–86
- 41531. Hatoum IJ, Blackstone R, Hunter TD, Francis DM, Steinbuch M, Harris JL, Kaplan LM. Clinical Factors Associated With Remission of Obesity-Related Comorbidities After Bariatric Surgery *JAMA Surg.* 2016; 151(2):130-137

- 32. Ashrafian H, le Roux CW, Rowland SP. Metabolic surgery and obstructive sleep apnoea: the protective effects of bariatric procedures Thorax doi:10.1136/thx.2010.151225
- 42033. Gomez J, Davis M, Slotman G. In the super-obese, weight loss and resolution of obesity comorbidities after bilio-pancreatic bypass/duodenal switch (DS) vary according to health insurance carrier: Medicaid vs Medicare vs Private Insurance vs Self-Pay in 1673 BOLD database patients. Am J Surg 2016 211: 519-524
- 34. Mustafa El-Hadi, MD, Daniel W. Birch, MD, Richdeep S. Gill, The effect of bariatric surgery on gastroesophageal reflux disease Can J Surg. 2014 57(2): 139–144.
 - 35. Schauer P, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim E, Nissen SE, Kashyap SR, et.al. N Engl J Med 2014; 370:2002-2013

Table 1. Pre-Operative Parameters Screened and Parameters Identified as Weighted

Independent Variables for Prognostic Models

Pre-Operative Parameters Screened as Potential Independent Variables:

Height (cm)	IVC Filter
-------------	------------

440 Weight (kg) Bariatric Procedure Planned

BMI Age

Gender Abdominal Hernia

African-American Alcohol Use
Asian Angina
Caucasian Asthma
Native American Back Pain
Hispanic Cholelithiasis

Pacific islander/Hawaiian Mental Health Diagnosis
Other Race Congestive Heart Failure

450 Cholecystectomy Depression

445

465

Cholecystectomy with Common GERD

Bile Duct Exploration Hypertension Endoscopic Examination Liver Disease

Gastrectomy Partial Musculoskeletal Pain

455 Gastrectomy Total Obesity Hypoventilation Syndrome

Hiatal Hernia Repair Psychological Impairment
Liver Biopsy Pulmonary Hypertension
Lysis of Adhesions Stress Urinary Incontinence

Small Bowel Resection Tobacco Use

460 Umbilical Hernia Repair Full Time Employment

Ventral Hernia Repair Sex

Final Independent Variables Used in the SMART Bariatric Models:

Age Height (cm)
Abdominal Hernia Hypertension
African-American Operation
Alcohol Use Liver Disease

Angina Mental Health Diagnosis
Asthma Musculoskeletal Pain

Back Pain Obesity Hypoventilation Syndrome

470	Congestive Heart Failure Caucasian	Psychological Impairment Employment
475	Cholelithiasis Depression GERD	Pulmonary Hypertension Stress Urinary Incontinence Weight (kg) Gender

Table 2. Modeling and Validation Results for Continuous and Categorical Dependent Variables

Model Fit for Continuous and Categorical Dependent Variables

	Observation:	2 Months	6 Months	12 Months	18 Months	24 Months
	Number of Patients	120,909	75,130	42,410	15,387	11,014
	Continuous Depende	ent Variables:				
	(r-squared)					
500	Weight/Weight Loss	0.910	0.813	0.725	0.638	0.61
	Dichotomous Depen	dent Variables	:			
	(ROC/AUC)					
	Cholelithiasis	0.985	0.975	0.967	0.957	0.949
	Diabetes Mellitus	0.956	0.940	0.933	0.930	0.926
505	GERD	0.898	0.860	0.829	0.818	0.804
	Hypertension	0.913	0.891	0.874	0.869	0.858
	Liver Disease	0.963	0.956	0.950	0.940	0.941
	Obstructive	0.887	0.858	0.837	0.841	0.827
	Sleep Anea					
510	Congestive Heart	0.881	0.878	0.883	0.883	0.872
	Failure Abdominal Hernia	0.971	0.960	0.947	0.935	0.921
	Surgeon Follow-up/	0.597	0.600	0.599	0.603	0.620
	Support Group Atten	dance				

Predicted Versus Observed Outcomes from Validation Group Pre-Operative Data Entered into Prognostic Models Built on the Modeling Group

	Observation:	2 Months	6 Months	12 Months	18 Months	24 Months		
	Number of Patients	41,528	25,768	14,527	5,255	3,703		
520	Continuous Depende	ent Variables:						
	Pearson Correlation (Coefficient						
	Weight/Weight Loss	0.959	0.932	0.875	0.837	0.811		
	Dichotomous Dependent Variables:							
525	Cholelithiasis							
	Sensitivity	97.13	94.7	91.78	90.94	86.93		
	Specificity	98.83	98.34	97.62	97.42	97.21		
530	Diabetes Mellitus							
	Sensitivity	98.39	74.87	72.14	69.14	60.28		
	Specificity	88.59	91.85	91.59	91.36	93.97		
535	GERD							
	Sensitivity	95.12	74.81	49.82	47.32	44.77		
	Specificity	81.05	80.27	87.07	87.25	86.65		
	Hypertension							
540	Sensitivity	92.44	92.61	77.91	79.15	79.56		
	Specificity	85.21	74.58	80.92	80.02	79.3		
	Liver Disease							
545	Sensitivity	88.55	85.22	84.79	79.39	77.58		
	Specificity	99.2	98.86	98.41	98.47	98.05		
550	Obstructive Sleep Ap	nea						
550	Sensitivity	73.99	87.57	64.06	59.05	50.76		

	Specificity	93.68	87.64	88.01	89.94	90.95
555	Abdominal Hernia					
	Sensitivity	93.31	90.03	85.99	79.2	75.27
	Specificity	99.56	99.45	99.16	99.27	99.1
560	Congestive Heart Fai	lure				
	Sensitivity	40.35	40.62	37.61	42.47	25
	Specificity	99.84	99.79	99.71	99.68	99.4
565	Post-Operative Surge	eon Follow-up a	and/or Support	Group Attenda	ance	
	Sensitivity	0.38	0.05	0.19	0	0.23
	Specificity	99.87	99.98	99.94	99.89	99.9
	Any Adverse Event					
570	Sensitivity		0.52	0.51		
	Specificity		99.92	99.92		

Table 3. Example Output of Prognostic Models Predicting Outcomes for 50 Year-Old Female,

585 **5ft 4in Tall, 320 lbs, with Depression, Diabetes, GERD, Hypertension, and Stress Urinary**Incontinence.

	Date:	2 months	6 months	12 months	18 months	24 months		
	Weight							
	AGB	292	277	263	254	251		
590	BPD/DS	275	230	194	183	182		
	LRYGB	277	234	208	200	200		
	RYGB	277	235	208	199	198		
	SG	280	245	222	217	211		
595	Relative Risk	of Having Mor	bid Obesity Co	-Morbidities (%	6)			
	Abdominal Hernia							
	AGB	0	1	1	1	1		
	BPD/DS	0	2	9	16	13		
	LRYGB	0	1	1	1	1		
600	RYGB	0	1	2	3	4		
	SG							
	Congestive H	eart Failure						
	AGB	0	1	1	1	0		
605	BPD/DS	1	1	1	1	1		
	LRYGB	1	1	1	1	1		

RYGB 0

	SG	1	1	1	1	0
610	Cholelithiasi	s				
	AGB	1	1	2	2	2
	BPD/DS	14	20	26	31	29
	LRYGB	1	1	2	2	3
	RYGB	1	1	1	2	2
615	SG	1	2	3	4	5
	GERD					
	AGB	38	30	25	25	24
	BPD/DS	47	41	26	31	32
620	LRYGB	36	23	17	18	16
	RYGB	36	28	22	24	25
	SG	41	32	34	25	25
	Diabetes					
625	AGB	23	20	17	15	14
	BPD/DS	21	14	7	7	4
	LRYGB	24	15	10	8	7
	RYGB	24	17	13	11	10
	SG	23	16	11	10	8

	Hypertension					
	AGB	58	52	43	37	38
635	BPD/DS	39	25	14	14	13
	LRYGB	42	27	19	16	16
	RYGB	48	32	28	29	25
	SG	46	33	24	23	21
	Liver Disease					
640	AGB	1	1	1	1	1
	BPD/DS	4	5	3	2	3
	LRYGB	1	1	1	1	0
	RYGB	3	2	2	1	2
	SG	1	1	1	1	1
645						
	Obstructive S	leep Apnea				
	AGB	47	45	40	38	35
	BPD/DS	55	45	34	33	31
	LRYGB	48	38	28	26	23
650	RYGB	51	42	32	28	25
	SG	49	42	32	30	26

Surgeon	Follow-u	o/Supp	ort Grour	Attendance
Jaigeon	1 Ono W a	P/ 24PP	ort Group	, itteriaariee

	AGB	12	13	11	11	9
	BPD/DS	20	22	19	21	18
660	LRYGB	16	18	16	16	14
	RYGB	16	17	15	14	15
	SG	15	17	14	15	12